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We present an exact and Monte Carlo renormalization gtM@RG) study of trails on an infinite family of
the plane-filling(PP fractals, which appear to be compact, that is, their fractal dimergsios equal to 2 for
all members of the fractal family enumerated by the odd intdggi3<b<®). For the PF fractals, we
calculate exactlyfor 3<b=<7) the critical exponentg (associated with the mean squared end-to-end dis-
tances of trailsand y (associated with the total number of different trpils addition, we calculate and y
through the MCRG approach fdr<201 andb=<151, respectively. The MCRG results fob=<7 deviate
from the exact results at most 0.04% in the case ahd 0.14% in the case of Our results show clearly that
v first increases for small values bf(up tob=9) and then starts to decrease, resembling the latgehavior
of v for self-avoiding walks(SAWSs) on the PF fractals. Similarly, our results show that the trail critical
exponenty, being always larger than the SAW Euclidean value 43/32, monotonically increasds avithfor
large b displays virtually the same behavior as the corresponding critical exponémt SAWs on the PF
fractals. We comment on a possible relevance of the comparative study of the criticality of trails and SAWs on
the PF family of fractals to the problem of the uniqueness of the universality class for trails and SAWSs on the
two-dimensional Euclidean lattices, by discussing the fractal-to-Euclidean crossover behavi@andfy.
[S1063-651X%98)07910-0

PACS numbsgs): 05.40:+j, 05.50+0, 64.60.Ak, 61.4ke

[. INTRODUCTION simulation methods[8-10, and transfer-matrix studies
[11,12. In spite of the numerous studies, few exact results
The self-avoiding walkSAW) on a lattice is a random for trails have been obtained. For this reason, it is desirable
walk that must not contain self-intersections, which impliesto study a family of fractal lattices whose members allow, in
that the walker must not cross a site more than once. It hagrinciple, an exact treatment of the problem and whose char-
been extensively studied as a challenging problem in statisacteristics approactvia the fractal-to-Euclidean crossoyer
tical physics and, in particular, as a satisfactory model of groperties of a Euclidean lattice. In addition, it is desirable to
linear polymer chain in a good solveft]. In the latter case, accomplish the latter task on a family of fractals for which
the forbidden self-intersections of the SAW path correspondhe SAW problem can be well analyzed.
to the excluded-volume interactions of monomers that com- In this paper we report an exact RG study and the Monte
prise the polymer chain. A random walk model, with a lessCarlo renormalization groufMCRG) study of trails on an
restrictive excluded-volume interaction, has been introducethfinite family of plane-filling (PF) fractals that appear to be
[2] under the name of self-avoiding trail, or simghgil, for =~ compact that is, their fractal dimensiod; is equal to 2 for
which no lattice bond is allowed to be visited more that onceall members of the fractal family enumerated by the odd
while lattice sites may be revisited. From the geometricaintegerb (3<b<). For the PF fractals, we calculate ex-
point of view, the lattice trail model has the same relation-actly and through the MCRG approach the critical exponents
ship to the SAW model as does the bond percolation mode} (associated with the mean squared end-to-end distances of
to the lattice site percolation model. The criticality of both trails) and y (associated with the total number of different
the SAW and the trail model, that is, their asymptotic prop-trails). We perform our calculations for as many members of
erties for a large numbe of steps, appears to belong to the the fractal family as possible in order to study the behavior
category of difficult problems in the critical phenomena stud-of the critical exponents in the fractal-to-Euclidean crossover
ies. In that context, one of the main issues has been whetheegion, which asymptotically appears whbn>%«. For the
SAWs and trails belong to the same universality class. Howsake of comparison of the obtained results for trails with
ever, to answer this question properly it is necessary to olthose of SAWSs, we extend here the set of data that has been
tain reliable results for the critical exponents of trails sincepreviously found in a study of SAWs on the same family of
the critical exponents for SAWs have been rather firmly esfractals[13].
tablished, at least for the two-dimensional Euclidean lattices The present paper is organized as follows. We define the
[3]. PF family of fractals in Sec. Il, where we also present the
To learn critical exponents of trails on the Euclidean lat-framework of our exact and MCRG approach to the evalua-
tices, various approaches have been applied, including rigotion of the critical exponents and y of trails on the PF
ous analysig4], exact enumeration techniqués,6], mo-  fractals, together with some specific results. In Sec. Ill we
mentum space renormalization grofrG) and the e = compare the critical exponents and y for the trails and
expansion[7], Monte Carlo (MC) studies, and scanning SAWSs and present pertinent conclusions.
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FIG. 2. Diagrammatic representation of the two restricted parti-
r=1 b=5 , r=2 tion functions for arrth stage of the fractal construction of a mem-

ber of the PF family. The fractal interior structure is not shown.

FIG. 1. First three fractal generators1) of the plane-filling  Thus, for exampleA") represents the trail that starts somewhere

(PP family of fractals and the second stage<(2) of theb=5 PF  \jthin therth stage fractal structure and leaves it at its upper right
fractal. link to rest of fractal.

II. TRAILS ON THE PLANE-FILLING CX)~(1—xum)~” 3
FRACTAL LATTICES

In this section we apply the exact RG and the MCRGand

method to calculate asymptotic properties of trails on the PF L(x)~(1—xu) 2. (4)
fractal lattices. Each member of the PF fractal family is la-
beled by an odd integeb (3<b<=) and can be con- |n order to calculater and y we have found that it is useful
structed in Stages. At the initial Stage:(].) the lattices are to introduce two restricted partition functiomgr) and B(r)
represented by the corresponding generdt®e Fig. 1 The  (see Fig. 2 The two restricted partition functions represent
rth stage fractal structure can be obtained iteratively in gartial sums of statistical weights of all possible trails within
self-similar way, that is, by enlarging the generator by a facthe rth stage fractal structure for the two kinds of trails de-
tor b""* and by replacing each of its segments with thepicted in the Fig. 2. The corresponding initial conditions
(r—1)th stage structurésee Fig. 1, so that the complete
fractal is obtained in the limit—o. The shape of the fractal AO=x BO=x (5)
generators and the way the fractals are constructed imply that
each member of the family has fractal dimensibrequal to ~ are relevant to the fractal unit segment0). For arbitrary
2. Thus they appear to be compact objgetith no voids r, the self-similarity of the fractals under study implies the
embedded in a two-dimensional Euclidean space, that igecursion relations
they resemble square lattices with various degrees of inho- " (r-1) m(r—1)
mogeneity distributed self-similarly. AT =TA(A B ) ®)

The basic asymptotic properties of trails, analogously to
the case of SAWSs, are described by two critical exponents
andy. The critical exponent is associated with the scaling B(N=fg(B D), 7
law (RZ%)~N2” for the mean squared end-to-end distance for
N-step trails, whereas the critical exponents associated where the explicit forms of the functiorfs, and fz are(due
with the scaling lawCy~ uNN”~1 for the total numbeCy  to the underlying self-similarityindependent of the specific
of distinct trails ofN steps(averaged over all possible posi- value of r. These equations comprise the renormalization
tions of the starting point Here w is the trail connectivity group for the trail problem.
constant and it is assumed th\iis a very large number. We We start by applying the above RG framework to find the
calculate these critical exponents in the framework of the RGrail critical exponenty for the PF fractals. First we shall
method, in which we study the corresponding generatingpresent the corresponding exact calculation and then we shall
functions that can be defined by introducing the weight facpresent the MCRG approach. To this end, we need to ana-
tor x (fugacity) for each step of the trail. The generating lyze Eq.(7) at the corresponding fixed point. It can be shown
functions that fg is a simple polynomial, so from Ed7)

C=2 Cux" (1) B'=2, ayB", ®)

where we have used the prime fah-order partition func-
tion and no indices for ther (- 1)th-order partition function.
o Here one should observe that the foregoing RG set of equa-
2 N tions has the same general form in the case of SAWs and in
sz (RN CWXTTC(0), @ the case of trails. The specific differences between the two
cases appear in the values of the coefficiefts which are
whose leading singular terms, wherapproaches I/ from  the numbers of all possible trailSAWSs) of N steps that
below, are of the form traverse the fractal generator.

and

L(x)
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TABLE |I. MCRG results for trails on the PF fractals enumer-

Knowing the RG equation{8), the critical exponentv

follows from ated by the scaling parameter The corresponding MCRG fixed
point valuesB* and the critical exponents and y are given in the
Inb second, third, and fourth columns, respectively.
y=—, 9
In\y b B* B y
where\ ; is the relevant eigenvalue of the RG equatiBhat 3 0.65485-0.00018 0.686740.00024 1.42740.0020
the nontrivial fixed point 8<B* <1 [13,14, that is, 5 0.55401-0.00013 0.716540.00015 1.5884 0.0023
7 0.50315-0.00009 0.720450.00012 1.64680.0025
N :d_B, (10) 9 0.4732-0.00008 0.720980.00010 1.684Z%0.0028
17 dB g+ 11 0.4539@0.00006 0.7205#0.00009 1.721€0.0030
13 0.440410.00006 0.720160.00009 1.755#40.0033
Consequently, evaluation of starts with determining the 15 0.4303%0.00016 0.719320.00026 1.77920.0039
coefficientsay of Eq. (8) and finding the pertinent fixed 17 0.42276:0.00005 0.7187820.00008 1.8025%0.0037
point valueB*, which is, according to the initial conditions 21 0.4115%0.00012 0.717980.00023 1.83650.0045
(5), equal to the critical fugacitx* =1/u. In the case of 25 0.4041%0.00010 0.716620.00021 1.87320.0049
trails, we have been able to find exact valuesagf for 31 0.3966%-0.00006 0.715360.00014 1.925F0.0053

3<b=<7, which are given in the Appenditwhereas in 35
the case of SAWs we reported the corresponding values for1
3=<b=<9 in the Appendix of13]). 51

Comparing the two casd$rails versus SAWs one can 61
see thatay for trails are always bigger thaay for SAWs, 71
which indicates that the case of exact enumeration of alg;
possible trails is more difficult than the enumeration ofgq

0.39296- 0.00008
0.38888:-0.00002
0.38416-0.00005
0.38136-0.00006
0.37903: 0.00006
0.37745:-0.00005
0.37662-0.00005

0.714780.00019
0.713720.00004
0.712780.00012
0.7115%0.00016
0.710560.00015
0.7102%10.00014
0.709380.00014

1.9388 0.0059
1.97750.0060
2.0096: 0.0070
2.049¢0.0080
2.07910.0085
2.11150.0092
2.12510.0115

SAWSs. This difference springs from the definition of the two 107 037517000004 0.709290.00014 2.134% 0.0098
kinds of walks wherefrom it follows that SAWSs, for a given 151 §373730.00004 0.7081F70.00012 2.1245% 0.0092
number of steps, comprise a subset of trails. KNOW8Rg 151 0.37236:0.00002 0.707720.00008 2.147%0.0159
for a .given b, we apply Eqs.(8)—(1Q)_ to learn the critical 171 0.37176:0.00003 0.707160.00011
fugacity x* (that is, B*) and the critical exponent. Our 201 0.371060.00003 0.7059% 000011

results for B* and v, for b=3,5, and 7, are(0.654 93,
0.686 50, (0.554 15, 0.716 52 and(0.503 04, 0.720 72 re-
spectively. This is the formula that enables us to calculatesia the
To overcome the computational problem of learning exacMCRG method, that is, without calculating explicitly the co-

values ofay, we apply the MCRG method fdr=09. It has efficientsay .
been justified in a number of casgk3,15,14 that, due to For a given fractalwith scaling factorb), we begin by
both the inherent self-similarity and the finite ramification of determining the critical fugacitg* . To this end, we start the
the underlying lattices, this method should work better in theMonte Carlo simulation with an initial guess for the fugacity
case of fractals than in the case of regular lattices. The eg,, in the region 6<B,<1. HereB, can be interpreted as the
sence of the MCRG methdd 3,15 consists of treatin®’,  probability of making the next step along an available direc-
given by Eq.(8), as the grand canonical partition function tion from the vertex that the walker has reached. Let us as-
that comprise all possible trail§SAWSs) that traverse the sume thatS, is the total number of the MC simulations of
fractal generator at two fixed apices. In this spirit, E8.  walks (at the choserB,) and letS} of them be those that
allows us to write the relation traverse the fractal generator. Hence the r&fitS, is the
renormalized fugacit, of the coarse-grained fractal struc-
ture. In this way we obtain the value of the sy& without
specifying the set. Then the next valueB, (n=1) at
which the MC simulation should be performed can be found
by using the “homing” procedurgl?], which can be closed
at the stage when the differenBg— B,,_; becomes less than
the statistical uncertainty associated wiBy_,. Conse-
guently,B* can be identified with the last vallg, found in
this way. Performing the MC simulation at the valB&, we
gan record all possible trailSAWSs) that traverse the fractal
generator Then, knowing such a set of walks, we can repre-

sent the average value of the length of a wighlat traverses
the generatorvia the corresponding average number of steps
(N(B*)). Accordingly, we can learn the value of the critical
exponentr through the formulg13). In Table | we present
our MCRG results for the trail critical exponent together
with the related critical fugacity*, for the PF fractal lat-

!

—_ B,
5 =5 (N®), 1y

where(N(B)) is given by

<N<B>>=i2 NayBN, (12)
B'°N

which can be considered as the average number of ste
made at fugacityB, by all possible trail{SAWS) that cross
the fractal generator. Comparing E4.0) with Eq. (11) we
obtain the equalit\,;=(N(B*)) and thereby we obtain

Inb

T I(N(B*)) 13
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tices withb=<201. Here we note that, comparing the MCRG o.s0
results for 3xb=7 with the exact results reported above, we v
can see that there is no deviation larger than 0.04%. 078
We now apply the RG method to find the trail critical
exponenty for the PF fractals, which determines the singular o.7e
part (3) of the generating functio€(x) defined by Eq(1).
To learn the singular behavior €f(x), in the vicinity of B*, 0.74
one needs to know the corresponding behavior of the re
stricted partition functionA( and B(") [13]. Since in the  °72f
previous paragraphs we have learned the behavig{of it

remains to analyze here the recursion relati@sThe con- 0.70

figuration of possible trail paths imply the following struc-

ture of the recursion relation o 0.1 2 b o8
A=g(Br"HAr-b, (14 FIG. 3. Results for the critical exponent for trails (solid

squares obtained in this work, and results for SAW®pen
squarey obtained in Ref[13] and supplemented in this work for

(r=1)y ial inR(T—1) ;
erere a(Bt fi LE‘ a p?Iyrromlal inB H - This ]fprr:]ul? b=151, 171, and 201. The horizontal broken line represents the
allows us to fin e critical exponent Hence we first note Euclidean valuer=3/4. The solid lines serve as guides to the eye.

that in the case under study, according to the procedure de-

tailed in previous papergl3,14,18, v can be expressed in . _
the form knowledge of polynomiab(B). In fact, to obtain\,, one

needs only values of this polynomial at the fixed pdsee
Eqg. (16)]. On the other hand, the polynomial that appears in
In(\2/b) (15) Eq. (14) can be considered to be a grand partition function of
In\,; ’ an appropriate ensemble and, consequently, within the
MCRG method 13,19 the requisite value of the polynomial
can be determined directly. Details of the way to ascertain
values ofa(B*) are quite similar to the way applied previ-
ously[13,19, and here we are not going to elaborate on it
Ap=a(B*) (16)  further. Owing to the fact that we can obtaiGB*) through
the MC simulations and knowing; from the preceding cal-
is the RG eigenvalue of the polynomi(B(" ~1)) defined by ~ culation of», we can apply Eq915) and(16) to learny. In
Eq. (14), with B* being the fixed point value of Eq8).  Table I we present our MCRG results ferfor 3<b=<151.
Therefore, it remains either to find means to determine extence, comparing the MCRG values fprfrom Table |, for
actly an explicit expression for the polynoma(B" 1) or  P=3, 5, and 7, with the exact results found in this work, one

to surpass this step and to evaluate only the single needéd@n see that the MCRG values deviate at most 0.14% from
valuea(B*). the available exact values.

In order to obtain an explicit expression of the polynomial
a(B~1), we note that its form, due to the underlying self-
similarity of the PF fractals, should not dependroand so in

fy:

where

Ill. DISCUSSION AND SUMMARY

what follows we assume=1. We then can verify the ex- We have studied critical properties of trails on the infinite
pression family of the PF fractals whose each member has fractal
dimensiond; equal to the Euclidean value 2. In particular,
a(B)=1+ BN 1 we have calculated the trails’ crltlcal exponemtand y via
(B) % Qn @n an exact R@for 3=b=<7) and via the MCRG approadhp

to b=<<201 for v and up tob=<151 for y). Specific results for

whereQy is the number of all trail§SAWS) of N steps that the trails’ critical exponents are presented in Table I. To
start at any bond within the generator<1) and leaves itat compare our results with the corresponding results for SAWs
a fixed exit, which implies that the above sum starts with theon the same family fractals, we have first extended the
N=1 term. By enumeration of all relevant walks, the coef-known[13] sequence of results Bb=<121) for the critical
ficientsQy can be evaluated exactly up to certain firbteln ~ exponentr and the critical fugacityB* for SAWSs by calcu-
the Appendix we present specific values @f;, for 3<b lating these two quantities fdr=151, 171, and 201 via the
<7. Using the data given in the Appendix, together withMCRG method. The corresponding results f@*(v) are
Egs.(15—(17) (and previously found8* and\,), we have (0.38476, 0.727 75 (0.38399, 0.726 31 and (0.383 16,
obtained the valuegyy=1.42940 (for b=3), y=1.58944 0.724 86. Consequently, in Fig. 3 we showto be a func-
(for b=5), andy=1.646 20(for b=7). tion of 1b for both SAWSs and trails. Notice thatfor SAWs

For a sequence dfi=9, the exact determination of the (vgay) in the region ot studied is always larger thanfor
polynomial (17) (that is, knowledge of the coefficieny) trails (vy.,i), which implies that the mean end-to-end dis-
can be hardly reached using the present-day computertance for SAWSs is always larger than the mean end-to-end
However, to calculate., one does not need a complete distance for trails



5380 ZIVIC, MILOSEVIC, AND STANLEY PRE 58
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FIG. 5. Results for the critical exponent for trails (solid
squarey obtained in this work, and data for SAWBpen squargs
obtained in Ref[13]. The horizontal broken line represents the
Euclidean valuey=43/32 for a two-dimensional lattice.

FIG. 4. Results for the fixed point valugs* (the reciprocal
connectivity for trails (solid squares obtained in this work, and
data for SAWs(open squargs obtained in Ref[13] and supple-
mented in this work fob=151, 171, and 201. The solid lines serve

as guides to the eye. As regards the limiting valuesbfere and S ) ]
their relation to the Euclidean values, see the text. which is in a good agreement with the corresponding result

0.367 57-0.000 01 for the square latti¢a2].
To complete our comparison of the two types of random
(Rsaw ) > (Ryrai)- (18) walks (trails and SAW$ on the PF fractals, we plot the cor-
responding values of the critical exponentas functions of

The above relation arises from the fact that in the case oﬁhe fractal enumeratdr (see Fig. 5 One can see that in both

trails the walker can cross twice a large number of the Iatticglses% being always larger than the Euclidean value 43/32

. Lo : |, monotonically increases with. In the case of SAWs we
sites, thereby making its path more packed. Next it appea emonstrated13], through the finite-size scaling argument,

(see Fig. 3 that the trails critical exponent,;, being al- , . . ) .

ways smaller than the Euclidean value 3/4, is a nonmonot—h"’lt?’WIII continue to Increase W'tb’ approachmg_ the non-
tonic function the scaling parameter However, one can Eucllt(:]e?r:hvalt;{?f 103/326” tf/t/]e “mtirI\H:C. F;(‘)nm tF 'gl' 5 Wg
notice that, for largd, the behavior o5 becomes similar see thal the ditierence between he two S&is tralls an

to the behavior ofvgay, that is, both of them display a S.A\.NS) becomes.smaller yv|th_|ncreasntngand SO We expect
monotonic decrease with. Here we encounter, as it might similar asymptotic behavior in the_ region °f.V?W large
be expected, the question as to what happens with both critE;SYée\(;?rt’htg tceristtics;lch?)gr?;rst()ec\t/?(t)?r:I?:quirs;mr:i:::lo rtlre];\jv
cal exponents #saw and v) i the fractal-to-Euclidean work, including the invention of the pertinent finite-size scal-

crossover wherb—«. According to the finite-size scaling ing arguments. Finally, as regards Fig. 5, we note that the
argumentg 13,14, the critical exponenw gay approaches, inequality ysaw™ veqi does not imply that the number of

from below, the Euclidean value 3/4 whén-o. From the AWSs. for a given large number of stebs can be larger
above comparison and on the grounds of the established un['- ' gv ge num DB . 9
an the number of trails. This observation arises from the

versality of trails and SAWs on the Euclidean Iatticespreviously established inequalifysay< ey (se€ Fig. 4
) i i SAW trail .
[4,5,8,9,11,1% one may suppose that will display the and from the power law behavigt"N?~? (for the number

same behavior in the limti— oo, but this assumption should of walks) expected to be valid in both cases.

be a topic of future investigations, In conclusion, our comparative study of trails and SAWs
Continuing the comparison of the criticality of SAWs and on the PF family of fractals shows that the two types of

trails on the PF fractals, we show in Fig. 4 our results for therandom walks disolav similar critical properties: similar be-
critical fixed pointsB* (which are equal to the reciprocal of play Prop j

the connectivity constant) for both types of walks. We ha_wors of the critical e>_<ponent3/(and 7) and t_he connec-
% * . tivity constant, as functions of the fractal scaling parameter
observe thatB’,,, are always larger thamB;,, that is,

AT . b. In addition, the observed similarity becomes more pro-
LEaw<Muai» Which is expected because the trail walk has y P

S o ) ) nounced for largd, that is, close to the fractal-to-Euclidean
by definition more possibilities to continue walking from a crossover regiont— ), which in a way corroborates the
given site. However, we also obseraee Fig. 4thatBsaw  cyrrent inferencé4,5,8,9,11,1pthat SAWSs and trailéon the
andBg,; behave quite similarly as functions ofoland that  two-dimensional Euclidean latticebelong to the same uni-
these functions become almost linear for labgérhis allows  versality class.
us to estimate the limiting values &%,,, and B} for b
—o0, which should be compared with the corresponding val-
ues for the square lattice. Our detailed numerical analysis
reveals thatBg,, has the asymptotic value 0.37915
+0.000 40, which should be compared with the Euclidean We present coefficients of the RG transformations that
value 0.379052@®) for the square lattice, obtained [&0]. have been used to calculate the critical exponeratady for
Similarly, in the case of trails on the PF fractals, we havethe trails on the PF family of fractals. First, we give the

found thatBj,; has the limiting value 0.367 350.00004, coefficientsay that appear in the RG relatid®):

APPENDIX: COEFFICIENTS OF THE RG
TRANSFORMATION
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b=3, az;=1, ag=2, ay=6,
b=5, as=1, a;=12, ay=20, a;;=62,
a,3—=138, a;s=186, a;;=416, a;4=198,
a,=1056, a,s=2592,
b=7, a;=1, ay=30, a;;=182, a,3=598,

a;5=2362, a,;=6960, a;o=22180, a,=59396,
3= 144364, a,5=323354, a,=654690,
ay—1273764, a;=2 068716, as—3 536168,
ass=4 747076, a;;=9 159256, az—8 367 376,
ay=22322808, a=10525376,
a4s=49701344, a,—83090912.

In what follows we present the coefficien@, of the RG
relation(17):

b=3, Q:=3, Q=5 Q3=4, Q;=8§,
Qs=6, Qg=6, Q;=6, Qg=6,
b=5, Q:=3, Q=5 Q3=15 Q4=33,

Qs=52, Qs=112, Q,=160, Qg=300, Qu=436,
Q10=736, Q1;=894, Q;,=1362, Q;3=1520,
Q14=2140, Q;5=2250, Qq¢=2770,
Q17=2630, Q;3=3430, Q;o=3296, Q,,=3648,

Q21=2592, Q,,=2592, Q,3=2592, Q,4=2592,
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b:7, Q1:3, Q2:5,
Qs5=091,

Q921930, QlO: 4310, Qll: 7764,

Q3=15, Q4=33,

Qs=209, Q,=444, Qg=1020,

Q1,=16580, Q13=29010, Q14=57942,
Q.5=96872, Q.s=183248, Q,;=292676,
Q,5=527616, Q.9=798676, Q=1 362976,
Q,,=1965700, Q,,=3190292,
Q,3=4 376352, Q,,=6 738484,
Q,5=8 827122, Q,=12960 066,
Q,=16118644, Q,g= 22632952,
Q,0=26977 068, Q=36 086 864,
Q3=41361132, Qg,=53569 348,
Q33=59243924, Qz,=73567 212,
Q5= 78272896, Q=97 043904,
Qa7= 98256232, Qze=114855912,
Qz0=114 120664, Q,= 136780568,
Qu=119775488, Q,,=129361024,
Q43=120561856, Q,,= 132792256,
Q45=83090912, Q,e=83090912,

Q4;=83090912, Q,=83090912.
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