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Comparative study of self-avoiding trails and self-avoiding walks on a family of compact fractals
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We present an exact and Monte Carlo renormalization group~MCRG! study of trails on an infinite family of
the plane-filling~PF! fractals, which appear to be compact, that is, their fractal dimensiondf is equal to 2 for
all members of the fractal family enumerated by the odd integerb (3<b,`). For the PF fractals, we
calculate exactly~for 3<b<7) the critical exponentsn ~associated with the mean squared end-to-end dis-
tances of trails! andg ~associated with the total number of different trails!. In addition, we calculaten andg
through the MCRG approach forb<201 andb<151, respectively. The MCRG results for 3<b<7 deviate
from the exact results at most 0.04% in the case ofn and 0.14% in the case ofg. Our results show clearly that
n first increases for small values ofb ~up tob59) and then starts to decrease, resembling the largeb behavior
of n for self-avoiding walks~SAWs! on the PF fractals. Similarly, our results show that the trail critical
exponentg, being always larger than the SAW Euclidean value 43/32, monotonically increases withb and for
large b displays virtually the same behavior as the corresponding critical exponentg for SAWs on the PF
fractals. We comment on a possible relevance of the comparative study of the criticality of trails and SAWs on
the PF family of fractals to the problem of the uniqueness of the universality class for trails and SAWs on the
two-dimensional Euclidean lattices, by discussing the fractal-to-Euclidean crossover behavior ofn and g.
@S1063-651X~98!07910-0#

PACS number~s!: 05.40.1j, 05.50.1q, 64.60.Ak, 61.41.1e
ie
h
ti
f

,
n
m
s
ce

c
ca
n
d
th
p
e
d
th
w
o
ce
es
ce

at
go

g

s
lts
ble
in
ar-

r
to

ch

nte

e

dd
x-
nts
s of

nt
of
ior
ver

ith
een
of

the
he
ua-

we
I. INTRODUCTION

The self-avoiding walk~SAW! on a lattice is a random
walk that must not contain self-intersections, which impl
that the walker must not cross a site more than once. It
been extensively studied as a challenging problem in sta
tical physics and, in particular, as a satisfactory model o
linear polymer chain in a good solvent@1#. In the latter case
the forbidden self-intersections of the SAW path correspo
to the excluded-volume interactions of monomers that co
prise the polymer chain. A random walk model, with a le
restrictive excluded-volume interaction, has been introdu
@2# under the name of self-avoiding trail, or simplytrail , for
which no lattice bond is allowed to be visited more that on
while lattice sites may be revisited. From the geometri
point of view, the lattice trail model has the same relatio
ship to the SAW model as does the bond percolation mo
to the lattice site percolation model. The criticality of bo
the SAW and the trail model, that is, their asymptotic pro
erties for a large numberN of steps, appears to belong to th
category of difficult problems in the critical phenomena stu
ies. In that context, one of the main issues has been whe
SAWs and trails belong to the same universality class. Ho
ever, to answer this question properly it is necessary to
tain reliable results for the critical exponents of trails sin
the critical exponents for SAWs have been rather firmly
tablished, at least for the two-dimensional Euclidean latti
@3#.

To learn critical exponents of trails on the Euclidean l
tices, various approaches have been applied, including ri
ous analysis@4#, exact enumeration techniques@5,6#, mo-
mentum space renormalization group~RG! and the e
expansion@7#, Monte Carlo ~MC! studies, and scannin
PRE 581063-651X/98/58~5!/5376~6!/$15.00
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simulation methods@8–10#, and transfer-matrix studie
@11,12#. In spite of the numerous studies, few exact resu
for trails have been obtained. For this reason, it is desira
to study a family of fractal lattices whose members allow,
principle, an exact treatment of the problem and whose ch
acteristics approach~via the fractal-to-Euclidean crossove!
properties of a Euclidean lattice. In addition, it is desirable
accomplish the latter task on a family of fractals for whi
the SAW problem can be well analyzed.

In this paper we report an exact RG study and the Mo
Carlo renormalization group~MCRG! study of trails on an
infinite family of plane-filling~PF! fractals that appear to b
compact, that is, their fractal dimensiondf is equal to 2 for
all members of the fractal family enumerated by the o
integerb (3<b,`). For the PF fractals, we calculate e
actly and through the MCRG approach the critical expone
n ~associated with the mean squared end-to-end distance
trails! and g ~associated with the total number of differe
trails!. We perform our calculations for as many members
the fractal family as possible in order to study the behav
of the critical exponents in the fractal-to-Euclidean crosso
region, which asymptotically appears whenb→`. For the
sake of comparison of the obtained results for trails w
those of SAWs, we extend here the set of data that has b
previously found in a study of SAWs on the same family
fractals@13#.

The present paper is organized as follows. We define
PF family of fractals in Sec. II, where we also present t
framework of our exact and MCRG approach to the eval
tion of the critical exponentsn and g of trails on the PF
fractals, together with some specific results. In Sec. III
compare the critical exponentsn and g for the trails and
SAWs and present pertinent conclusions.
5376 © 1998 The American Physical Society
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II. TRAILS ON THE PLANE-FILLING
FRACTAL LATTICES

In this section we apply the exact RG and the MCR
method to calculate asymptotic properties of trails on the
fractal lattices. Each member of the PF fractal family is
beled by an odd integerb (3<b,`) and can be con-
structed in stages. At the initial stage (r 51) the lattices are
represented by the corresponding generators~see Fig. 1!. The
r th stage fractal structure can be obtained iteratively in
self-similar way, that is, by enlarging the generator by a f
tor br 21 and by replacing each of its segments with t
(r 21)th stage structure~see Fig. 1!, so that the complete
fractal is obtained in the limitr→`. The shape of the fracta
generators and the way the fractals are constructed imply
each member of the family has fractal dimensiondf equal to
2. Thus they appear to be compact objects~with no voids!
embedded in a two-dimensional Euclidean space, tha
they resemble square lattices with various degrees of in
mogeneity distributed self-similarly.

The basic asymptotic properties of trails, analogously
the case of SAWs, are described by two critical exponenn
andg. The critical exponentn is associated with the scalin
law ^RN

2 &;N2n for the mean squared end-to-end distance
N-step trails, whereas the critical exponentg is associated
with the scaling lawCN;mNNg21 for the total numberCN
of distinct trails ofN steps~averaged over all possible pos
tions of the starting point!. Herem is the trail connectivity
constant and it is assumed thatN is a very large number. We
calculate these critical exponents in the framework of the
method, in which we study the corresponding generat
functions that can be defined by introducing the weight f
tor x ~fugacity! for each step of the trail. The generatin
functions

C~x![ (
N51

`

CNxN ~1!

and

L~x![ (
N52

`

^RN
2 &CNxN/C~x!, ~2!

whose leading singular terms, whenx approaches 1/m from
below, are of the form

FIG. 1. First three fractal generators (r 51) of the plane-filling
~PF! family of fractals and the second stage (r 52) of theb55 PF
fractal.
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C~x!;~12xm!2g ~3!

and

L~x!;~12xm!22n. ~4!

In order to calculaten andg we have found that it is usefu
to introduce two restricted partition functionsA(r ) and B(r )

~see Fig. 2!. The two restricted partition functions represe
partial sums of statistical weights of all possible trails with
the r th stage fractal structure for the two kinds of trails d
picted in the Fig. 2. The corresponding initial conditions

A~0!5Ax, B~0!5x ~5!

are relevant to the fractal unit segment (r 50). For arbitrary
r , the self-similarity of the fractals under study implies th
recursion relations

A~r !5 f A~A~r 21!,B~r 21!! ~6!

and

B~r !5 f B~B~r 21!!, ~7!

where the explicit forms of the functionsf A and f B are~due
to the underlying self-similarity! independent of the specifi
value of r . These equations comprise the renormalizat
group for the trail problem.

We start by applying the above RG framework to find t
trail critical exponentn for the PF fractals. First we sha
present the corresponding exact calculation and then we s
present the MCRG approach. To this end, we need to a
lyze Eq.~7! at the corresponding fixed point. It can be show
that f B is a simple polynomial, so from Eq.~7!

B85(
N

aNBN, ~8!

where we have used the prime forr th-order partition func-
tion and no indices for the (r 21)th-order partition function.
Here one should observe that the foregoing RG set of eq
tions has the same general form in the case of SAWs an
the case of trails. The specific differences between the
cases appear in the values of the coefficientsaN , which are
the numbers of all possible trails~SAWs! of N steps that
traverse the fractal generator.

FIG. 2. Diagrammatic representation of the two restricted pa
tion functions for anr th stage of the fractal construction of a mem
ber of the PF family. The fractal interior structure is not show
Thus, for example,A(r ) represents the trail that starts somewhe
within the r th stage fractal structure and leaves it at its upper ri
link to rest of fractal.
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Knowing the RG equation~8!, the critical exponentn
follows from

n5
ln b

ln l1
, ~9!

wherel1 is the relevant eigenvalue of the RG equation~8! at
the nontrivial fixed point 0,B* ,1 @13,14#, that is,

l15
dB8

dB U
B*

. ~10!

Consequently, evaluation ofn starts with determining the
coefficientsaN of Eq. ~8! and finding the pertinent fixed
point valueB* , which is, according to the initial condition
~5!, equal to the critical fugacityx* 51/m. In the case of
trails, we have been able to find exact values ofaN for
3<b<7, which are given in the Appendix~whereas in
the case of SAWs we reported the corresponding values
3<b<9 in the Appendix of@13#!.

Comparing the two cases~trails versus SAWs!, one can
see thataN for trails are always bigger thanaN for SAWs,
which indicates that the case of exact enumeration of
possible trails is more difficult than the enumeration
SAWs. This difference springs from the definition of the tw
kinds of walks wherefrom it follows that SAWs, for a give
number of steps, comprise a subset of trails. KnowingaN ,
for a givenb, we apply Eqs.~8!–~10! to learn the critical
fugacity x* ~that is, B* ) and the critical exponentn. Our
results for B* and n, for b53,5, and 7, are~0.654 93,
0.686 50!, ~0.554 15, 0.716 52!, and~0.503 04, 0.720 72!, re-
spectively.

To overcome the computational problem of learning ex
values ofaN , we apply the MCRG method forb>9. It has
been justified in a number of cases@13,15,16# that, due to
both the inherent self-similarity and the finite ramification
the underlying lattices, this method should work better in
case of fractals than in the case of regular lattices. The
sence of the MCRG method@13,15# consists of treatingB8,
given by Eq.~8!, as the grand canonical partition functio
that comprise all possible trails~SAWs! that traverse the
fractal generator at two fixed apices. In this spirit, Eq.~8!
allows us to write the relation

dB8

dB
5

B8

B
^N~B!&, ~11!

where^N(B)& is given by

^N~B!&5
1

B8
(
N

NaNBN, ~12!

which can be considered as the average number of s
made at fugacityB, by all possible trails~SAWs! that cross
the fractal generator. Comparing Eq.~10! with Eq. ~11! we
obtain the equalityl15^N(B* )& and thereby we obtain

n5
ln b

ln^N~B* !&
. ~13!
or

ll
f

t

e
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This is the formula that enables us to calculaten via the
MCRG method, that is, without calculating explicitly the c
efficientsaN .

For a given fractal~with scaling factorb), we begin by
determining the critical fugacityB* . To this end, we start the
Monte Carlo simulation with an initial guess for the fugaci
B0 in the region 0,B0,1. HereB0 can be interpreted as th
probability of making the next step along an available dire
tion from the vertex that the walker has reached. Let us
sume thatS0 is the total number of the MC simulations o
walks ~at the chosenB0) and letS0

t of them be those tha
traverse the fractal generator. Hence the ratioS0

t /S0 is the
renormalized fugacityB08 of the coarse-grained fractal struc
ture. In this way we obtain the value of the sum~8! without
specifying the setaN . Then the next valuesBn (n>1) at
which the MC simulation should be performed can be fou
by using the ‘‘homing’’ procedure@17#, which can be closed
at the stage when the differenceBn2Bn21 becomes less than
the statistical uncertainty associated withBn21 . Conse-
quently,B* can be identified with the last valueBn found in
this way. Performing the MC simulation at the valueB* , we
can record all possible trails~SAWs! that traverse the fracta
generator. Then, knowing such a set of walks, we can re
sent the average value of the length of a walk~that traverses
the generator! via the corresponding average number of ste
^N(B* )&. Accordingly, we can learn the value of the critic
exponentn through the formula~13!. In Table I we present
our MCRG results for the trail critical exponentn, together
with the related critical fugacityB* , for the PF fractal lat-

TABLE I. MCRG results for trails on the PF fractals enume
ated by the scaling parameterb. The corresponding MCRG fixed
point valuesB* and the critical exponentsn andg are given in the
second, third, and fourth columns, respectively.

b B* n g

3 0.6548560.00018 0.6867460.00024 1.427460.0020
5 0.5540160.00013 0.7165460.00015 1.588460.0023
7 0.5031560.00009 0.7204560.00012 1.646860.0025
9 0.4732060.00008 0.7209860.00010 1.684760.0028
11 0.4539060.00006 0.7205460.00009 1.721960.0030
13 0.4404160.00006 0.7201660.00009 1.755460.0033
15 0.4303560.00016 0.7193260.00026 1.779260.0039
17 0.4227660.00005 0.7187960.00008 1.802560.0037
21 0.4115760.00012 0.7179860.00023 1.836560.0045
25 0.4041360.00010 0.7166260.00021 1.873260.0049
31 0.3966960.00006 0.7153060.00014 1.925760.0053
35 0.3929060.00008 0.7147860.00019 1.938860.0059
41 0.3888860.00002 0.7137260.00004 1.977560.0060
51 0.3841660.00005 0.7127860.00012 2.009060.0070
61 0.3813060.00006 0.7115760.00016 2.049960.0080
71 0.3790360.00006 0.7105060.00015 2.079160.0085
81 0.3774560.00005 0.7102160.00014 2.111560.0092
91 0.3766260.00005 0.7093860.00014 2.125160.0115
101 0.3751760.00004 0.7092960.00014 2.134160.0098
121 0.3737360.00004 0.7081760.00012 2.124560.0092
151 0.3723660.00002 0.7077260.00008 2.147560.0159
171 0.3717060.00003 0.7071660.00011
201 0.3710060.00003 0.7059560.00011
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tices withb<201. Here we note that, comparing the MCR
results for 3<b<7 with the exact results reported above, w
can see that there is no deviation larger than 0.04%.

We now apply the RG method to find the trail critic
exponentg for the PF fractals, which determines the singu
part ~3! of the generating functionC(x) defined by Eq.~1!.
To learn the singular behavior ofC(x), in the vicinity ofB* ,
one needs to know the corresponding behavior of the
stricted partition functionsA(r ) and B(r ) @13#. Since in the
previous paragraphs we have learned the behavior ofB(r ), it
remains to analyze here the recursion relations~6!. The con-
figuration of possible trail paths imply the following stru
ture of the recursion relation

A~r !5a~B~r 21!!A~r 21!, ~14!

where a(B(r 21)) is a polynomial inB(r 21). This formula
allows us to find the critical exponentg. Hence we first note
that in the case under study, according to the procedure
tailed in previous papers@13,14,18#, g can be expressed i
the form

g52
ln~l2 /b!

ln l1
, ~15!

where

l25a~B* ! ~16!

is the RG eigenvalue of the polynomiala(B(r 21)) defined by
Eq. ~14!, with B* being the fixed point value of Eq.~8!.
Therefore, it remains either to find means to determine
actly an explicit expression for the polynomiala(B(r 21)) or
to surpass this step and to evaluate only the single nee
valuea(B* ).

In order to obtain an explicit expression of the polynom
a(B(r 21)), we note that its form, due to the underlying se
similarity of the PF fractals, should not depend onr and so in
what follows we assumer 51. We then can verify the ex
pression

a~B!511(
N

QNBN, ~17!

whereQN is the number of all trails~SAWs! of N steps that
start at any bond within the generator (r 51) and leaves it at
a fixed exit, which implies that the above sum starts with
N51 term. By enumeration of all relevant walks, the co
ficientsQN can be evaluated exactly up to certain finiteb. In
the Appendix we present specific values ofQN for 3<b
<7. Using the data given in the Appendix, together w
Eqs.~15!–~17! ~and previously foundB* andl1), we have
obtained the valuesg51.429 40 ~for b53), g51.589 44
~for b55), andg51.646 20~for b57).

For a sequence ofb>9, the exact determination of th
polynomial ~17! ~that is, knowledge of the coefficientsQN)
can be hardly reached using the present-day compu
However, to calculatel2 one does not need a comple
r

e-

e-

x-

ed

l

e
-

rs.

knowledge of polynomiala(B). In fact, to obtainl2 , one
needs only values of this polynomial at the fixed point@see
Eq. ~16!#. On the other hand, the polynomial that appears
Eq. ~14! can be considered to be a grand partition function
an appropriate ensemble and, consequently, within
MCRG method@13,19# the requisite value of the polynomia
can be determined directly. Details of the way to ascert
values ofa(B* ) are quite similar to the way applied prev
ously @13,19#, and here we are not going to elaborate on
further. Owing to the fact that we can obtaina(B* ) through
the MC simulations and knowingl1 from the preceding cal-
culation ofn, we can apply Eqs.~15! and~16! to learng. In
Table I we present our MCRG results forg for 3<b<151.
Hence, comparing the MCRG values forg from Table I, for
b53, 5, and 7, with the exact results found in this work, o
can see that the MCRG values deviate at most 0.14% f
the available exact values.

III. DISCUSSION AND SUMMARY

We have studied critical properties of trails on the infin
family of the PF fractals whose each member has fra
dimensiondf equal to the Euclidean value 2. In particula
we have calculated the trails’ critical exponentsn andg via
an exact RG~for 3<b<7) and via the MCRG approach~up
to b<201 forn and up tob<151 forg). Specific results for
the trails’ critical exponents are presented in Table I.
compare our results with the corresponding results for SA
on the same family fractals, we have first extended
known @13# sequence of results (3<b<121) for the critical
exponentn and the critical fugacityB* for SAWs by calcu-
lating these two quantities forb5151, 171, and 201 via the
MCRG method. The corresponding results for (B* ,n) are
~0.384 76, 0.727 75!, ~0.383 99, 0.726 31!, and ~0.383 16,
0.724 86!. Consequently, in Fig. 3 we shown to be a func-
tion of 1/b for both SAWs and trails. Notice thatn for SAWs
(nSAW) in the region ofb studied is always larger thann for
trails (n trail), which implies that the mean end-to-end di
tance for SAWs is always larger than the mean end-to-
distance for trails

FIG. 3. Results for the critical exponentn for trails ~solid
squares!, obtained in this work, and results for SAWs~open
squares!, obtained in Ref.@13# and supplemented in this work fo
b5151, 171, and 201. The horizontal broken line represents
Euclidean valuen53/4. The solid lines serve as guides to the e
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^RSAW &.^Rtrail&. ~18!

The above relation arises from the fact that in the case
trails the walker can cross twice a large number of the lat
sites, thereby making its path more packed. Next it appe
~see Fig. 3! that the trails critical exponentn trail , being al-
ways smaller than the Euclidean value 3/4, is a nonmo
tonic function the scaling parameterb. However, one can
notice that, for largeb, the behavior ofn trail becomes similar
to the behavior ofnSAW, that is, both of them display a
monotonic decrease withb. Here we encounter, as it migh
be expected, the question as to what happens with both c
cal exponents (nSAW and n trail) in the fractal-to-Euclidean
crossover whenb→`. According to the finite-size scaling
arguments@13,14#, the critical exponentn SAW approaches,
from below, the Euclidean value 3/4 whenb→`. From the
above comparison and on the grounds of the established
versality of trails and SAWs on the Euclidean lattic
@4,5,8,9,11,12#, one may suppose thatn trail will display the
same behavior in the limitb→`, but this assumption shoul
be a topic of future investigations.

Continuing the comparison of the criticality of SAWs an
trails on the PF fractals, we show in Fig. 4 our results for
critical fixed pointsB* ~which are equal to the reciprocal o
the connectivity constantm) for both types of walks. We
observe thatB SAW* are always larger thanBtrail* , that is,
mSAW* ,m trail* , which is expected because the trail walk h
by definition more possibilities to continue walking from
given site. However, we also observe~see Fig. 4! that BSAW*
andBtrail* behave quite similarly as functions of 1/b and that
these functions become almost linear for largeb. This allows
us to estimate the limiting values ofBSAW* and Btrail* for b
→`, which should be compared with the corresponding v
ues for the square lattice. Our detailed numerical anal
reveals that BSAW* has the asymptotic value 0.379 1
60.000 40, which should be compared with the Euclide
value 0.379 052 3~3! for the square lattice, obtained in@20#.
Similarly, in the case of trails on the PF fractals, we ha
found thatBtrail* has the limiting value 0.367 3560.000 04,

FIG. 4. Results for the fixed point valuesB* ~the reciprocal
connectivity! for trails ~solid squares!, obtained in this work, and
data for SAWs~open squares!, obtained in Ref.@13# and supple-
mented in this work forb5151, 171, and 201. The solid lines serv
as guides to the eye. As regards the limiting values forb→` and
their relation to the Euclidean values, see the text.
of
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which is in a good agreement with the corresponding re
0.367 5760.000 01 for the square lattice@12#.

To complete our comparison of the two types of rando
walks ~trails and SAWs! on the PF fractals, we plot the cor
responding values of the critical exponentg as functions of
the fractal enumeratorb ~see Fig. 5!. One can see that in bot
casesg, being always larger than the Euclidean value 43
@3#, monotonically increases withb. In the case of SAWs we
demonstrated@13#, through the finite-size scaling argumen
thatg will continue to increase withb, approaching the non
Euclidean value 103/32 in the limitb→`. From Fig. 5 we
see that the difference between the two sets~for trails and
SAWs! becomes smaller with increasingb and so we expec
similar asymptotic behavior in the region of very largeb.
However, to test such an expectation~which is similar to the
case of the critical exponentn) would require much new
work, including the invention of the pertinent finite-size sca
ing arguments. Finally, as regards Fig. 5, we note that
inequality gSAW.g trail does not imply that the number o
SAWs, for a given large number of stepsN, can be larger
than the number of trails. This observation arises from
previously established inequalitymSAW,m trail ~see Fig. 4!
and from the power law behaviormNNg21 ~for the number
of walks! expected to be valid in both cases.

In conclusion, our comparative study of trails and SAW
on the PF family of fractals shows that the two types
random walks display similar critical properties: similar b
haviors of the critical exponents (n andg) and the connec-
tivity constant, as functions of the fractal scaling parame
b. In addition, the observed similarity becomes more p
nounced for largeb, that is, close to the fractal-to-Euclidea
crossover region (b→`), which in a way corroborates th
current inference@4,5,8,9,11,12# that SAWs and trails~on the
two-dimensional Euclidean lattices! belong to the same uni
versality class.

APPENDIX: COEFFICIENTS OF THE RG
TRANSFORMATION

We present coefficients of the RG transformations t
have been used to calculate the critical exponentsn andg for
the trails on the PF family of fractals. First, we give th
coefficientsaN that appear in the RG relation~8!:

FIG. 5. Results for the critical exponentg for trails ~solid
squares!, obtained in this work, and data for SAWs~open squares!,
obtained in Ref.@13#. The horizontal broken line represents th
Euclidean valueg543/32 for a two-dimensional lattice.
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b53, a351, a552, a956,

b55, a551, a7512, a9520, a11562,

a135138, a155186, a175416, a195198,

a2151056, a2552592,

b57, a751, a9530, a115182, a135598,

a1552362, a1756960, a19522 180, a21559 396,

a235144 364, a255323 354, a275654 690,

a2951 273 764, a3152 068 716, a3353 536 168,

a3554 747 076, a3759 159 256, a3958 367 376,

a41522 322 808, a43510 525 376,

a45549 701 344, a49583 090 912.

In what follows we present the coefficientsQN of the RG
relation ~17!:

b53, Q153, Q255, Q354, Q458,

Q556, Q656, Q756, Q856,

b55, Q153, Q255, Q3515, Q4533,

Q5552, Q65112, Q75160, Q85300, Q95436,

Q105736, Q115894, Q1251362, Q1351520,

Q1452140, Q1552250, Q1652770,

Q1752630, Q1853430, Q1953296, Q2053648,

Q2152592, Q2252592, Q2352592, Q2452592,
b57, Q153, Q255, Q3515, Q4533,

Q5591, Q65209, Q75444, Q851020,

Q951930, Q1054310, Q1157764,

Q12516 580, Q13529 010, Q14557 942,

Q15596 872, Q165183 248, Q175292 676,

Q185527 616, Q195798 676, Q2051 362 976,

Q21519 657 00, Q2253 190 292,

Q2354 376 352, Q2456 738 484,

Q2558 827 122, Q26512 960 066,

Q27516 118 644, Q28522 632 952,

Q29526 977 068, Q30536 086 864,

Q31541 361 132, Q32553 569 348,

Q33559 243 924, Q34573 567 212,

Q35578 272 896, Q36597 043 904,

Q37598 256 232, Q385114 855 912,

Q395114 120 664, Q405136 780 568,

Q415119 775 488, Q425129 361 024,

Q435120 561 856, Q445132 792 256,

Q45583 090 912, Q46583 090 912,

Q47583 090 912, Q48583 090 912.
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@16# S. Milošević and I. Živić, J. Phys. A26, 7263~1993!.
@17# S. Redner and P. J. Reynolds, J. Phys. A14, 2679~1981!.
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